

K 50

Flow controller

2007.06

Technical description

Application:

Central heating, cooling systems and in district heating substations, primary side.

Function: Flow control. Closes at increasing flow.

Pressure class: PN 16 or PN 25.

Max. differential pressure: 1600 kPa = 16 bar

Pressure drop on the throttle (Fc): 15 kPa or 45 kPa.

Temperature: Max. working temperature: 150°C Min. working temperature: -10°C

Media:

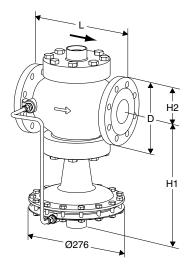
Water and neutral fluids, water-glycol mixtures.

Material:

Valve body: Ductile iron EN-GJS-400-18LT Actuator body: Ductile iron EN-GJS-400-18LT Diaphragms and gaskets: EPDM Valve plug: Stainless steel with EPDM insert. Valve seat: Stainless steel.

Surface treatment:

Duasolid painting.

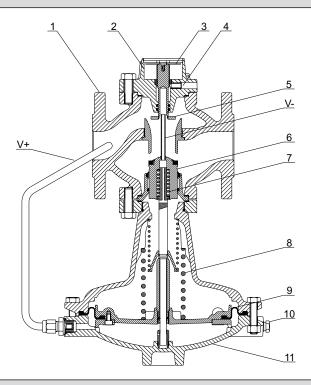

Marking:

TA, DN, PN, Fc and flow direction arrow.

Flanges:

According to EN-1092-2:1997, type 21.

we knowhow


 \rightarrow = Flow direction

Fc = 15									
TA No	DN	D	L	H1	H2	Kvs	q _{min} m³/h	q _{max} m³/h	Kg
PN 16									
52 752-165	65	185	290	355	135	55	1,5	21	44
52 752-190	100	235	350	455	175	120	4,0	45	77
52 752-191	125	270	400	465	190	145	5,0	60	94
52 752-192	150	300	480	490	227	230	15	200	224
52 752-193	200	360	600	535	260	360	20	230	286
PN 25 (DN 32-50 and DN 80 also fit PN 16 flanges)									
52 752-232	32	140	180	310	102	21	0,8	8,5	27
52 752-240	40	150	200	310	102	25	0,8	9,5	28
52 752-250	50	165	230	335	116	32	1,0	13	35
52 752-265	65	185	290	355	135	55	1,5	21	44
52 752-280	80	200	310	365	149	70	2,5	24	55
52 752-290	100	235	350	455	175	120	4,0	45	77
52 752-291	125	270	400	465	190	145	5,0	60	94
52 752-292	150	300	480	490	227	230	15	200	224
52 752-293	200	360	600	535	260	360	20	230	286

Fc	=	45
10	_	40

TA No	DN	D	L	H1	H2	Kvs	q _{min} m³/h	q _{max} m³/h	Kg
PN 16									
52 752-065	65	185	290	355	135	55	2,4	34	44
52 752-090	100	235	350	455	175	120	6,4	72	77
52 752-091	125	270	400	465	190	145	8,0	96	94
52 752-092	150	300	480	490	227	230	24	320	224
52 752-093	200	360	600	535	260	360	32	368	286
PN 25 (DN 32-50 and DN 80 also fit PN 16 flanges)									
52 752-332	32	140	180	310	102	21	1,3	14	27
52 752-340	40	150	200	310	102	25	1,3	15	28
52 752-350	50	165	230	335	116	32	1,6	21	35
52 752-365	65	185	290	355	135	55	2,4	34	44
52 752-380	80	200	310	365	149	70	4,0	38	55
52 752-390	100	235	350	455	175	120	6,4	72	77
52 752-391	125	270	400	465	190	145	8,0	96	94
52 752-392	150	300	480	490	227	230	24	320	224
52 752-393	200	360	600	535	260	360	32	230	286

Operating function

Installation

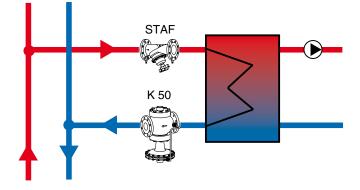
The valve can be installed in inlet or return pipe (upstream or downstream the consumer). The direction of the flow is shown by the arrow on the valve body.

It is recommended to install the controller in horizontal pipeline with actuator body below. Installation of a strainer upstream the controller is recommended.

It is important to ensure that working temperature and pressure do not exceed allowed values.

Before you mount the controller, check the fitting length of the controller, pitch diameter and the diameter of the holes for the screws.

When the pipeline and the controller are full of water and the pressure is stabilized, vent the controller by vent screw (10).


Installation of balacing valve STAF is recommended to enable flow measurement, commissioning and troubleshooting with balancing instrument TA-CBI or measuring instrument TA-CMI. ment scale (3). The valve's plug is protected against overload with a safety spring (7). The pressure upstream the throttle acts as plus pressure (V+) to the bottom side and the pressure downstream the throttle acts as minus pressure (V-) to the top side of the diaphragm.

The pressure difference on diaphragm (9) acts against the force of spring (8).

The controller consists of a valve (1) and a diaphragm actuator (11). The valve has a built-in throttle (5) with a flow adjust-

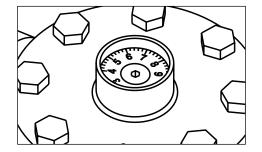
The spring attempts to open, and the pressure difference attempts to close the valve.

There is only one value of the flow for one throttle position when the forces, that act to the diaphragm, are in balance. Constant flow, maintained by the controller, depends only on the throttle position and not on pressure drop on the valve.

Setting

Flow adjustment

- 1. Release the fixing screw (4).
- Turn the throttle (5) clockwise down to the start position (the point 0,0 on the adjustment scale (3) of the throttle and on the scale (2) of the cover should be aligned).
- Then adjust the corresponding number of the adjustment scale turns according to flow chart and the scale of the cover.
- 4. At the end, tighten the fixing screw.


The water flow has been measured on each individual valve in all positions of adjustment scale. Each valve has its own identity number and individual flow chart included in the scope of supply. The copy of the chart can be provided by supplier. Provide next data: type, DN, Fc, serial number.

Accuracy of the flow adjustment: ±2%.

Sizing

Select the size according to maximal flow. Control the pressure drop in valve by formula: $\Delta p = 100 \times q^2 / Kvs^2$ [kPa], where q is flow in m³/h. Constant pressure drop in throttle 15 kPa or 45 kPa must be added to pressure drop calculated by the Kvs.

Tour & Andersson retains the right to make changes to its products and specifications without prior notice.

