Техническая документация

по проектированию ПАРОВОЙ СИСТЕМЫ ЛУЧИСТОГО ОТОПЛЕНИЯ

VAPORAD

Настоящий документ является собственностью фирмы «Fraccaro Officine Termotecniche S.r.l.». Запрещается воспроизведение или передача электронным, механическим или другим способом какой-либо части данного документа без наличия на то письменного разрешения со стороны фирмы Fraccaro.

VAPORAD ПАРОВЫЕ СИСТЕМЫ ЛУЧИСТОГО ОТОПЛЕНИЯ

УКАЗАТЕЛЬ

- 1.0 ПАРОВЫЕ СИСТЕМЫ ЛУЧИСТОГО ОТОПЛЕНИЯ VAPORAD
- 1.1 Принцип действия
- 1.2 Преимущества системы VAPORAD
- 1.3 Котел VAPORAD
- 1.4 Устройство контроля давления
- 1.5 Теплоизлучающие панели
- 1.6 Новая линия WP
- 1.7 Модельный ряд и размеры
- 2.0 ПРОЕКТИРОВАНИЕ С ИСПОЛЬЗОВАНИЕМ ТЕПЛОИЗЛУЧАЮЩИХ ПАНЕЛЕЙ
- 2.1 Теплоотдача
- 2.2 Высота монтажа и межосевые расстояния
- 2.3 Примеры компоновки панелей Waterstrip
- 2.4 Паровые калориферы
- 3.0 ТЕРМОРЕГУЛИРОВАНИЕ
- 3.1 Электрощит GQK
- 3.2 Система цифрового терморегулирования COMPUTER COMFORT CONTROL SCP200GEN
- 4.0 ПРОЕКТИРОВАНИЕ СИСТЕМ
- 4.1 Конфигурация системы
- 4.2 Примеры монтажа
- 5.0 СЕРТИФИКАТ UNI ISO 9001:2000

1.0 ТЕПЛОИЗЛУЧАЮЩИЕ СИСТЕМЫ VAPORAD

ПРАВИЛЬНЫЙ ВЫБОР

Главная цель системы отопления всегда должна быть направлена на создание условий комфорта в отапливаемых помещениях. Данная цель достигается тогда, когда удается устранить некоторые недостатки, которыми страдают традиционные системы отопления, а именно: стратификация воздуха, когда теплый воздух собирается в верхней части помещения, и конвекционные движения, которые могут перемещать пыль и таким образом ухудшать качество вдыхаемого воздуха.

С использованием теплоизлучающей системы VAPORAD эти проблемы успешно решаются, так как устраняется явление стратификации воздуха, поддерживая, таким образом, в среднем более низкую температуру воздуха: как следствие воздух остается более свежим и менее сухим. Кроме этого теплоизлучающие панели обеспечивают снижение эксплуатационных расходов благодаря снижению расхода топлива и гарантированной надежности системы.

Генераторы пара VAPORAD и теплоизлучающие панели, как и все оборудование завода «Фраккаро», представляют собой результат специального технического исследования и изучения в течение многих лет. «Фраккаро» всегда поставляет технологически передовое оборудование, которое абсолютно не боится сравнения с изделиями конкурентов.

1.1 ПРИНЦИП ДЕЙСТВИЯ

Системы генераторов VAPORAD с теплоизлучающими панелями используются для лучистого отопления помещений промышленного или гражданского назначения. Данные системы наилучшим образом отвечают требованиям бесшумности в работе и отсутствия движения воздуха, одинаково хорошо отапливая как маленькие, так и большие помещения.

Отсутствие движения воздуха и пониженная стратификация теплого воздуха позволяют рассчитывать на весьма благоприятные затраты по эксплуатации.

Паровые теплоизлучающие панели имеют более высокую теплоотдачу по сравнению с водяными панелями и таким образом обеспечивают большее количество тепла на единицу теплоизлучающей площади.

Система состоит из генератора пара, трубопроводов подачи пара и возврата конденсата, теплоизлучающих панелей и устройства для контроля давления, осуществляющего мониторинг давления и температуры в системе и удаляющего возможный избыток воздуха. Контур циркуляции теплоносителя закрытого типа, безвоздушный; данное условие позволяет осуществлять естественную циркуляцию пара без использования насосов, необходимых для водяных систем. Пар под давлением 0,5 относительных бар передает свое тепло теплоизлучающим пластинам, которые нагреваются до 105-110 °C . После теплоотдачи пар конденсируется и возвращается на генератор. Весь процесс происходит при постоянной температуре, равномерно распределенной по всей поверхности теплоизлучающей панели в результате использования латентного тепла конденсации пара.

1.2 ПРЕИМУЩЕСТВА СИСТЕМЫ VAPORAD

Системы VAPORAD с теплоизлучающими панелями представляют собой простую и надежную конструкцию: в сравнении с традиционными водяными системами отопления отсутствуют клапаны, насосы, системы подпитки воды и расширительные емкости, кроме этого, по сравнению с традиционными паровыми системами отсутствует емкость сбора конденсата, оборудование для подготовки воды, сливы конденсата, различные клапаны, фильтры и насос питания парового генератора. Теплоизлучающие панели, используя в качестве теплоносителя пар при 110 °С, приводят к экономии 30% смонтированной теплоизлучающей площади по сравнению с водяными теплоизлучающими панелями при достижении одинакового комфорта в помещении. Другие значительные преимущества теплоизлучающей системы VAPORAD:

Гибкость в монтаже: благодаря возможности монтировать системы модульного типа

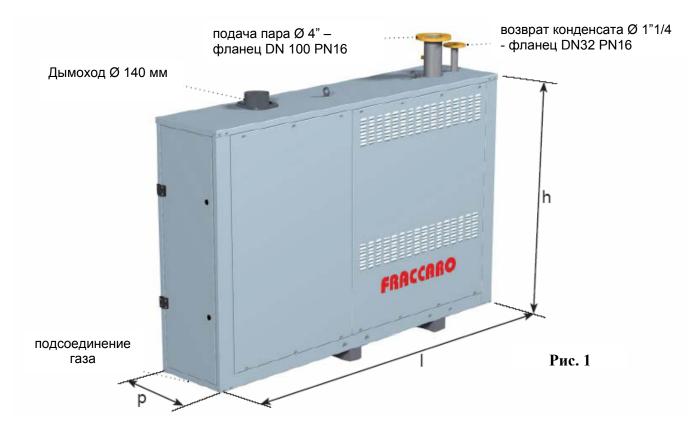
Экономия в эксплуатации: обеспечивается кратчайшим временем выхода в режим (20 минут) и

отсутствием электрических насосов и привычного централизованного

теплового пункта

Надежность в работе: системы VAPORAD не нуждаются в сложных

механических/электромеханических устройствах и не приводят к образованию накипи даже при использовании обычной водопроводной воды, контур вода-пар закрытый, следовательно, нет необходимости в


подпитке.

С точки зрения норм к системе, работающей при давлении ниже 0,5 относительных бар (1,5 абсолютных бар) и с максимальной температурой 110 °C, не применяется Директива 97/23/СЕ относительно оборудования, работающего под давлением.

Генераторы пара VAPORAD не нуждаются в регистрации и проверке со стороны органа I.S.P.E.S.L.

1.3 ΓΕΗΕΡΑΤΟΡ ΠΑΡΑ VAPORAD

Генератор пара VAPORAD был разработан и специально предназначен для совместного использования с паровыми теплоизлучающими панелями. Его небольшие размеры позволяют установить его на наружной стене. Генератор пара VAPORAD — с изменяемой мощностью, в комплекте с горелкой, работающей на метане или сжиженном газе. Отсутствие воздуха в паровом контуре в сочетании с собственными характеристиками генератора обеспечивает полную бесшумность рабочего режима. Нет необходимости в электрических насосах, поскольку используется естественная циркуляция пара. Рабочее давление и температура ниже соответственно 110 °С и 0,5 отн. бар освобождают от контроля со стороны органов I.S.P.E.S.L.

молель расход тепла	Номинальный расход тепла	Номинальная мощность Hs	Подсоеди	Вес сухой, кг	Содержание	габариты, мм			
МОДСЛЬ	Hs мин/макс, КВт	мин/макс, КВт	нение газа	Dec cyxon, Ki	воды, л	Глубина(Р)	Ширина(I)	Высота(h)	
VPR 200	150/200	139,5/186	1"1/4	465	185	525	- 2410	1660	
VPR 150	100/150	93/139,5	1 1/4						
VPR 100	70/100	65,1/93	3/4"	000	400	200			
VPR 070	50/70	46,5/65,1	/4	336	120	300			

Таб. 1

Технические характеристики

Максимальная мощность генератора пара VAPORAD 200 КВт; генератор имеет принудительную тягу, что позволяет использовать дымоход диаметром всего 140 мм. Генератор VAPORAD, предназначенный для производства пара при разрежении, укомплектован горелкой ECOMIX с подсосом воздуха, регулируемой мощностью, электронным розжигом, ионизационным датчиком наличия пламени, теплоизоляцией из стекловолокна высокой плотности, покрытой алюминиевой фольгой. Корпус из предварительно окрашенного алюминия, наружного исполнения. Теплообменник из специальной стали способен выдержать высокие тепловые нагрузки. В наличии все устройства безопасности для контроля газа, температуры и давления. Генератор снабжен противоморозным устройством с установленным порогом срабатывания 5 °C. Газовый генератор VAPORAD устанавливается снаружи на земле, модели же VPR070 и VPR100 могут быть смонтированы и на фасаде. Размеры генератора не намного больше обычного противопожарного щита.

1.4 УСТРОЙСТВО КОНТРОЛЯ ДАВЛЕНИЯ

Устройство контроля давления предназначено для непрерывного мониторинга давления и температуры и в случае не когерентности в термодинамическом соотношении вода-пар (одновременный контроль давления и температуры) удаляет лишний воздух из контура без выброса пара. Операция по контролю давления полностью автоматизирована и не требует дополнительных работ ни со стороны пользователя, ни со стороны технического персонала.

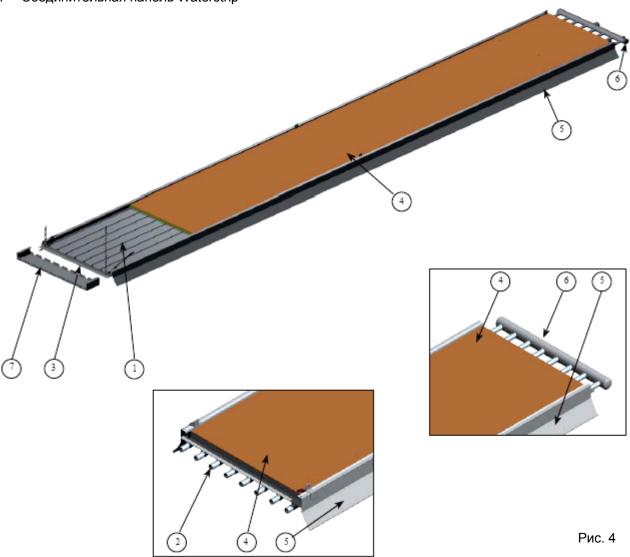
Устройство состоит из:

- датчика давления
- электроклапана для выброса воздуха
- индикатора уровня
- температурного зонта и термостата
- приборов контроля уровня

Рис. 2

Расположение устройства контроля давления

Устройство контроля давления должно располагаться на коллекторе для сбора конденсата, в самой высокой точке возвратной трубы: такое расположение позволяет устранять из контура неконденсируемый материал (воздух). Устройство контроля давления должно быть установлено на каждом пароконденсатном контуре. Как уже сказано, во время работы системы отопления, нет необходимости во вмешательстве в работу устройства выброса воздуха, поскольку он полностью автоматизирован. Очень важно запроектировать правильную планировку системы таким образом, чтобы самая высокая точка каждого контура и соответствующий прибор контроля давления были расположены соответственно, так как неправильный проект и монтаж могут привести к сбою в работе системы. Фирма Фраккаро снимает с себя какую-либо ответственность за неполадки в работе системы, проект которой не был согласован с нашим техническим отделом.


Рис. 3

1.5 ТЕПЛОИЗЛУЧАЮЩИЕ ПАНЕЛИ

Теплоизлучающие панели состоят из нескольких труб, закрепленных на стальном корпусе, верхняя сторона которого изолирована. Тщательное исполнение обеспечивает – даже по прошествии многих лет работы – отличный контакт между трубами и теплоизлучающей панелью и позволяет достигать самых высоких показателей тепловой отдачи. Для снижения циркуляции воздуха, а следовательно и конвекционных движений, можно установить боковые фартуки. В местах стыков между различными секциями предусматривается использование соединительной панели, стыки должны быть выполнены сваркой. На верхней стороне, с шагом около метра, имеются поперечины усиления, используемые также и в качестве анкеровки. Для рекуперации тепла, уходящего вверх, предусматривается применение панели из стекловолокна с защитным верхним слоем из крафт-бумаги. Коллекторы имеют круглое сечение и поставляются уже приваренными к теплоизлучающим панелям. Стандартный цвет – светло-серый RAL9002, на заказ возможна поставка оборудования других цветов RAL.

Описание:

- 1 = Профилированная панель с пазами, из предварительно окрашенного проката
- 2 = Трубы Ø 28 мм или Ø 22, в зависимости от модели
- 3 = Поперечина усиления
- 4 = Верхняя изоляционная панель
- 5 = Противоконвекционный фартук
- 6 = Коллектор с круглым сечением
- 7 = Соединительная панель Waterstrip

1.6 НОВАЯ ЛИНИЯ WP

Кроме классической линии WS имеется также новая гамма WP.

Новая запатентованная серия WP отличается традиционной надежностью и гибкостью, присущей теплоизлучающим панелям Фраккаро, наиболее важные характеристики следующие:

- Труба из оцинкованной стали Ø 22 мм, номинальный размер в соответствии со спецификацией пресфитинга 22 мм;
- Теплоизлучающая панель с двойной защитой: из предварительно окрашенной оцинкованной стали;
- Самонесущий профиль;
- Большая гибкость в монтаже с возможностью крепежа к траверсам, расположенным с шагом 1,5 м; максимальная свобода при использовании передвижных крепежей.

1.7 МОДЕЛЬНЫЙ РЯД И РАЗМЕРЫ СЕРИЯ WP

Модели Waterstrip – линия	ı WP	WP2-060	WP2-090	WP2-120	WP3-040	WP3-060	WP3-090	WP3-120		
Количество труб		4	6	8	4	6	9	12		
Наружный диаметр труб	ММ		22		22					
Расстояние между трубами	ММ		150			100				
Количество воды	л/м	1,13	1,70	2,27	1,13	1,70	2,55	3,40		
Вес прибора без воды	кг/м	7,78	7,78 11,36 14,94			9,99	14,49	19,00		
Вес прибора с водой	кг/м	8,91	8,91 13,06 17,21			11,69	17,04	22,40		

Таб. 2

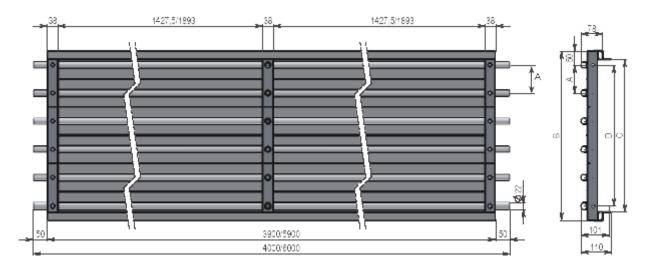


Рис. 5

Высота, мм	Позиция	WP2-060	WP2-090	WP2-120	WP3-040	WP3-060	WP3-090	WP3-120	
Расстояние между трубами	Α		150		100				
Высота прибора	В	550	750	1150	400	600	900	1200	
Расстояние между передвижным крепежом	С	494	694	1094	344	544	844	1144	
Расстояние между отверстиями в поперечине для крепежа	D	450	650	1050	300	500	800	1100	

Таб. 3

СЕРИЯ WS

Модели Waterstrip – сери	WS2-600	WS2-900	WS3-400	WS3-600	WS3-900			
Количество труб	4	6	4	6	8			
Наружный диаметр труб	ММ	2	28		28			
Расстояние между трубами	ММ	150		100				
Количество воды	л/м	1,96	2,95	1,96	2,95	3,93		
Вес прибора без воды	кг/м	9,10	12,2	8,95	11,99	15,50		
Вес прибора с водой	Вес прибора с водой кг/м		15,15	10,91	14,94	19,43		

Таб. 4

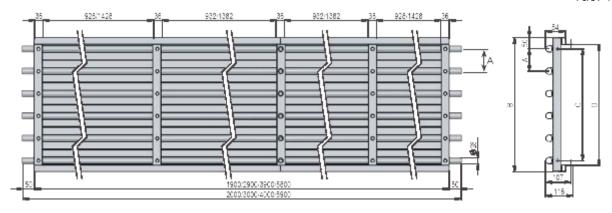


Рис. 6

Высота, мм	Позиция	WS2-600	WS2-900	WS3-400	WS3-600	WS3-900
Расстояние между трубами	Α	150		100		
Высота прибора	В	550	850	400	600	800
Расстояние между передвижным крепежом	С	494	794	344	544	744
Расстояние между отверстиями в поперечине для крепежа	D	447	747	297	497	697

Таб. 5

Коллектор

Размеры коллектора для Waterstrip	серия WS	серия WP	
Размеры коллектора с круглым сечением	ММ	60	60
Наружный диаметр труб для соединения запрессовкой	ММ	28	22
Соединительная муфта питания коллектора	дюйм	1"1/4	1"1/4
Муфта выброса или выпуска воздуха	дюйм	3/8"	3/8"

Таб. 6

Рис. 7

Рис. 8

Описание:

- 1. Коллектор с круглым сечением
- 2. Подача / выброс
- 3. Соединительные отверстия

Соединение теплоизлучающих панелей и коллектора

Соединение между теплоизлучающими панелями WATERSTRIP или панелями и коллектором должно выполняться с помощью сварки, чтобы обеспечить отличную герметичность под давлением. Такой тип стыковки обеспечивает отличную герметичность даже при условии высокого давления и температуры.

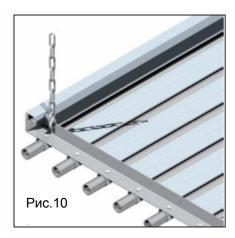
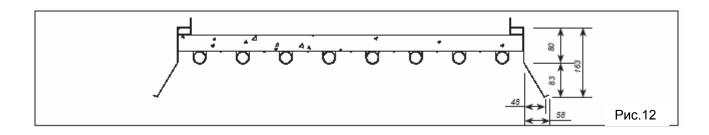

Сварной герметичный шов

Рис. 9

Способ крепления теплоизлучающих панелей

Крепление теплоизлучающих панелей WATERSTRIP к несущим конструкциям кровли цеха может быть выполнено двумя способами, указанными на следующих рисунках.



Крепление может быть выполнено с помощью двух отверстий, расположенных по краям поперечин усиления (см. расположение и расстояния в разделе Размеры Теплоизлучающих Панелей). В отверстия вставляются крюки, к которым крепится цепь, которая в свою очередь крепится к несущим конструкциям помещения с помощью дюбелей (ж/бетонные конструкции) или используя стальные поперечины. В случаях, когда нельзя использовать поперечины в качестве точек крепления, например, когда необходимо учитывать конфигурацию кровли, можно использовать передвижной крепеж (комплектующие, поставляемые фирмой Фраккаро на заказ) или же можно выполнить отверстие в самонесущем ребре, чтобы вставить туда болты с проушинами в качестве крепежа. Это позволит закрепить теплоизлучающую панель в любом месте, в котором будет иметься крепление к кровле.

Боковые фартуки

Теплоизлучающие панели отдают тепло за счет излучения (большая часть) и частично за счет конвекции (меньшая часть). В некоторых особых условиях, например, в помещениях с высокими потолками или при наличии существенных передвижений воздуха, часть энергии, передаваемой с помощью конвекции, может увеличиться за счет эффективности излучения, негативно влияя на экономичность эксплуатации системы. Для предупреждения этой проблемы можно использовать боковые фартуки (комплектующие), создающие барьер потокам воздуха и уменьшающие эффект конвекции.

2.0 ПРОЕКТИРОВАНИЕ С ИСПОЛЬЗОВАНИЕМ ТЕПЛОИЗЛУЧАЮЩИХ ПАНЕЛЕЙ 2.1 ТЕПЛООТДАЧА

Серия WP – значения теплоотдачи на 1 погонный метр панели

	Сер	ия WP2 шаг	150	Серия WP3 шаг 100				
	WP2-060	WP2-090	WP2-120	WP3-040	WP3-060	WP3-090	WP3-120	
Δ Tm, °K	Вт/м	Вт/м	Вт/м	Вт/м	Вт/м	Вт/м	Вт/м	
84	481	680	900	417	585	836	1072	
86	494	699	925	429	602	860	1102	
88	508	719	950	441	618	884	1133	
90	521	738	975	453	635	907	1163	
92	535	757	1000	465	652	931	1194	
94	549	777	1026	477	669	956	1225	
96	562	796	1051	489	686	980	1256	
98	576	816	1077	501	703	1004	1286	
100	590	835	1102	513	720	1028	1318	
102	604	855	1128	525	737	1053	1349	
104	617	875	1154	537	754	1078	1380	
106	631	895	1179	549	771	1102	1412	
108	645	915	1205	562	789	1127	1443	
110	659	935	1231	574	806	1152	1475	
112	673	955	1257	586	823	1177	1507	
114	687	975	1284	599	841	1202	1538	
116	701	995	1310	611	859	1227	1570	
118	716	1015	1336	624	876	1252	1602	
120	730	1035	1362	636	894	1277	1635	
	•			•	-		Ta6 7	

Таб. 7

Серия WP - значения теплоотдачи для пары коллекторов

	Cep	ия WP2 шаг	150		Серия WF	Р3 шаг 100	
	WP2-060	WP2-090	WP2-120	WP3-040	WP3-060	WP3-090	WP3-120
Δ Tm, °K	Вт	Вт	Вт	Вт	Вт	Вт	Вт
84	349	515	645	224	334	521	703
86	360	530	663	230	344	535	723
88	370	545	682	237	354	550	744
90	380	560	701	243	364	565	765
92	391	576	721	250	374	580	786
94	402	591	740	256	384	595	807
96	412	606	759	263	394	610	828
98	423	622	779	270	404	626	850
100	434	638	798	277	414	641	871
102	445	653	818	283	424	656	893
104	455	669	837	290	434	671	914
106	466	685	857	297	444	687	936
108	477	701	877	304	455	702	958
110	488	717	897	311	465	718	980
112	499	733	917	318	475	733	1002
114	511	749	937	324	486	749	1024
116	522	765	957	331	496	765	1046
118	533	781	977	338	506	780	1068
120	544	797	998	345	517	796	1091

Таб. 8

Серия WS – значения теплоотдачи на 1 погонный метр панели

	Серия WF	2 шаг 150	Cep	ия WP3 шаг	100
	WS2-600	WS2-900	WS3-400	WS3-600	WS3-900
Δ Tm, °K	Вт/м	Вт/м	Вт/м	Вт/м	Вт/м
84	477	673	413	583	713
86	490	691	425	599	732
88	503	710	436	616	752
90	517	729	448	633	772
92	530	748	460	649	792
94	544	768	472	666	812
96	557	787	483	683	832
98	571	806	495	700	852
100	584	825	507	717	872
102	598	845	519	734	892
104	612	864	531	751	912
106	625	884	544	768	932
108	639	904	556	786	953
110	653	923	568	803	973
112	667	943	580	820	994
114	681	963	592	838	1014
116	695	983	605	855	1035
118	709	1003	617	873	1055
120	723	1023	629	890	1076

Таб. 9

Серия WS – значения теплоотдачи для пары коллекторов

	Серия WF	2 шаг 150	Cep	ия WP3 шаг	100
	WS2-600	WS2-900	WS3-400	WS3-600	WS3-900
Δ Tm, °K	Вт	Вт	Вт	Вт	Вт
84	433	660	357	435	720
86	445	680	368	446	741
88	457	701	379	456	763
90	470	721	390	467	785
92	482	742	401	478	807
94	495	762	412	489	829
96	507	783	424	500	852
98	520	804	435	511	874
100	533	825	446	522	897
102	545	846	458	533	919
104	558	867	469	544	942
106	571	889	480	555	965
108	584	910	492	566	988
110	597	932	504	577	1011
112	610	954	515	588	1034
114	623	975	527	599	1057
116	636	997	539	610	1081
118	649	1019	551	621	1104
120	662	1042	563	632	1128

Таб. 10

Пример расчета тепловой отдачи

В соответствии с нормой EN 14037 теплоотдача должна рассчитываться согласно формуле: $Q=K(\Delta t_m)^n$ (Q=W/m). Для коллекторов используется та же формула с получением чистой отдачи (Q=W) для каждого коллектора.

С помощью параметра Δt_m указывается разница между средней температурой теплоносителя и температурой помещения, в нашем случае пар конденсируется при постоянной температуре, температура на входе и выходе панели составляют: tv=110°C; температура в помещении: Δt_m =18°C; следовательно: Δt_m = t_v – t_a = 90°C. При t_m = 90°C получаем следующие значения теплоотдачи:

модель	Номинальная теплоотдача	модель	Номинальная теплоотдача
WS2-600	517	WS3-400	448
WS2-900	729	WS3-600	633
		WS3-900	722
WP2-060	521	WP3-040	453
WP2-090	738	WP3-060	635
WP2-120	975	WP3-090	907
		WP3-120	1163

Таб 11

Полученные значения в среднем выше на 75% относительно системы обогрева с горячей водой. В предшествующих таблицах указанные значения Q уже рассчитаны, в любом случае значения k и n приводятся в следующей таблице.

ТЕПЛОИЗЛУЧАЮЩИЕ	Серия WS	32 шаг 150	Се	рия WS3 шаг	100			
ПАНЕЛИ	WS2-600	WS2-900	WS3-400	WS3-600	WS3-900	ТЕПЛОИЗЛ	УЧАЮЩИЕ	
k	2,717	3,696	2,196	3,014	4,282	ПАНЕЛИ		
n	1,166	1,175	1,182	1,188	1,154			
ТЕПЛОИЗЛУЧАЮЩИЕ	Серия WP шаг 150			Серия WS3 шаг 100				
ПАНЕЛИ	WP2-060	WP2-090	WP2-120	WP3-040	WP3-060	WP3-090	WP3-120	
k	2,717	3,696	5,220	2,196	3,014	4,325	5,691	
n	1,168	1,177	1,162	1,184	1,189	1,188	1,182	
КОЛЛЕКТОРЫ	Серия WS2 шаг 150 Сер			рия WS3 шаг	100			
KOMILKTOI BI	WS2-600	WS2-900	WS3-400	WS3-600	WS3-900	коппе	КТОРЫ	
k	2,212	2,287	1,269	4,128	2,721	KOJIJE	KTOT BI	
n	1,191	1,279	1,274	1,051	1,260			
КОЛЛЕКТОРЫ	Ce	рия WP шаг 1	150		Серия V	VS3 шаг 100		
KOMMERTOI BI	WP2-060	WP2-090	WP2-120	WP3-040	WP3-060	WP3-090	WP3-120	
k	1,409	2,242	2,841	1,013	1,501	2,670	2,997	
n	1,244	1,227	1,224	1,218	1,220	1,190	1,232	

Таб. 12

Составляющая теплоотдачи от излучения и от конвекции

Ниже приводим процентное соотношение радиационной и конвекционной теплоотдачи приборов WATERSTRIP на основании их наклона. В нижеприведенной таблице приводятся различные соотношения теплоотдачи при изменении наклона.

Наклон панели	Излучающая составляющая, %	Конвекционная составляющая, %
30°	65	35
45°	60	40
60°	55	45
90°	50	50

Таб. 13

ВЫСОТА МОНТАЖА И МЕЖОСЕВЫЕ РАССТОЯНИЯ

При изменении высоты монтажа теплоизлучающих панелей изменяется также и их теплоотдача. Данный фактор очень важен и должен учитываться на этапе проектирования. Увеличительные коэффициенты коррекции приведены в следующей таблице.

Высота монтажа, м	6	6,5	7	7,5	8	8,5	9	10	11	12
коэффициент	1	0,98	0,97	0,96	0,94	0,92	0,9	0,88	0,87	0,86

Таб. 14

В случае более высоких отметок монтажа советуем проконсультироваться с нашим Технико-Коммерческим Отделом.

Для получения равномерного и однородного теплового потока в отапливаемой площади максимальная дистанция между двумя панелями системы не должна быть больше значения высоты монтажа: I max<=H.

Максимальное расстояние между теплоизлучающими панелями I max

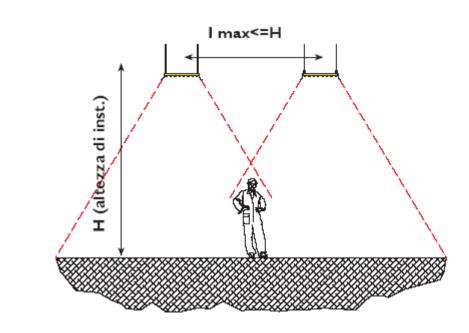
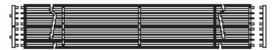
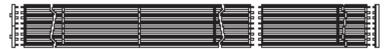


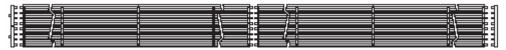
Рис. 13


Рекомендуемая минимальная высота монтажа:

Средняя		Миним	альная высота монтажа		
температура воды, °С	WS2-600 WS2-900 WP2-060 WP2-090	WS3-400 WP3-040	WS3-600 WS3-900 WP3-060 WP3-090	WP2-120	WP3-120
90	3,50	3,40	3,70	3,70	3,90
100	3,70	3,50	4,00	3,90	4,20
110	4,00	3,60	4,20	4,30	4,40
120	4,30	3,70	4,50	4,60	4,70


Таб. 15

2.3 ПРИМЕРЫ КОМПОНОВКИ ПАНЕЛЕЙ WATERSTRIP


Ниже приводятся некоторые примеры компоновки теплоизлучающих панелей WATERSTRIP.

Участок длиной 6 м

Участок длиной 6 м + участок длиной 4 м = линия длиной 10 м

Участок длиной 6 м + участок длиной 6 м = линия длиной 12 м

Рис. 14

Компоновки в длину

С помощью стандартных модулей длиной 4 м и 6 м можно составить линию любой длины, кратной 2 м, с минимальной длиной 4 метра. В нижеприведенной таблице указаны возможные компоновки по длине.

				Обща	ая длина	а, м.					
М	4	6	8	10	12	14	16	18	20	22	24
Участки по 4 м	1		2	1		2	1		2	1	
Участки по 6 м		1		1	2	1	2	3	2	3	4

Таб. 16

2.4 ПАРОВЫЕ КАЛОРИФЕРЫ

В особых случаях (например, низкие помещения и помещения небольшого объема) иногда более предпочтительно использование паровых калориферов.

В этих целях могут использоваться наши калориферы VAR030A и VAR040A, спроектированные и сконструированные специально для работы на пару низкого давления.

Способ установки и управления работой системы абсолютно идентичны случаю с использованием теплоизлучающих панелей: всегда необходимо обращать максимум внимания на то, чтобы генератор был расположен в нижней позиции относительно калориферов на расстоянии не менее 2,5 м. Таким же образом должны быть рассчитаны и установлены линии подачи пара и возврата конденсата, обращая внимание на то, чтобы не было участков, в которых могут образоваться «водяные мешки»: необходимо всегда иметь уклон не менее 1% для обеспечения возврата конденсата в генератор.

В следующих таблицах указаны характеристики калориферов.

			УРОВЕНЬ			Троопуус	301	НА ВЛИЯНИЯ	я для монт	АЖА								
модель	СКОРОСТЬ ВРАШЕНИЯ	ПОДАЧА ВОЗДУХА	ШУМА	ТЕПЛО	ОТДАЧА	Т воздуха на	HA C	TEHE	НА ПС	ТОЛКЕ								
	БРАЩЕНИ И	воздуха	в 5 М			выходе	высота	выброс	МАКС. ВЫСОТА	ПЛОЩАДЬ								
	об/мин	м3/час	ас дБ(А) Ккал/ч кВт		°C	М	М	М	м2									
VAR030A	1400	4250 5600	4250	4250	4250	4250	4250	4250	4250	4250	64	25170	29,28	37	3,5-4,5	16	5,5	80
VAR040A	1400		66	32810	38,17	37	4-5	20	6	100								

Таб. 17

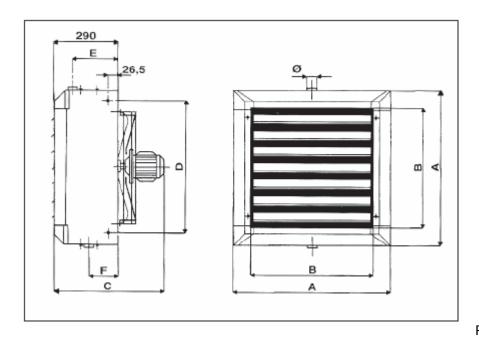


Рис. 15

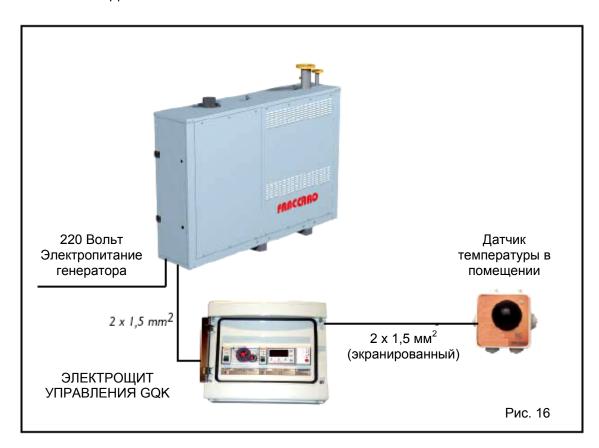
модель	Α	В	С	D	E	F	Ø
VAR030A	634	498	488	537	220	130	1"1/4
VAR040A	688	552	488	591	220	130	1"1/4

Таб. 18

Теплоотдача в таблице указана для температуры воздуха 15 °C, при других значениях температуры необходимо увеличить теплоотдачу на корректирующий коэффициент C, указанный в таблице.

Темп. воздуха	-10	-5	0	5	10	15	20	25
коэффициент С	1,26	1,21	1,16	1,10	1,05	1,00	0,95	0,90

Таб. 19


3.0 ТЕРМОРЕГУЛИРОВАНИЕ 3.1. ЭЛЕКТРОШИТ GQK

Электрощит управления GQK – результат глубоких исследований, направленных на такое управление системами, при котором используются параметры комфорта и энергосбережения. Данный щит предназначен для управления паровыми системами VAPORAD и состоит из:

- выключатель, отключающий питание приборов;
- ручной выключатель, позволяющий запускать систему без включения программирующего таймера;
- недельный программирующий таймер со свинцовым аккумулятором для поддержания данных в памяти в течение долгого времени при отключении напряжения;
- двухстадийный шаровой термостат с микропроцессором, 3-разрадный светящийся дисплей с разрешением до десятой доли, клавиатура с тремя клавишами для регулировки рабочей температуры и других установочных параметров с доступом через пароль;
- световая сигнализация мощности, требуемой генератором, с помощью двух индикаторных лампочек;
- блок управления с сигнализацией рабочего состояния, сигнализация наличия пламени, сигнализация недостаточности давления газа с соответствующей блокировкой, сигнализация блокировки горелки со встроенной кнопкой разблокировки;
- корпус из ABS с прозрачной дверкой, со степенью защиты IP55.

Так как электрощит GQK состоит из набора съемных модулей, получается экономичной замена отдельных компонентов в случае возможных поломок и при техобслуживании.

ЭЛЕКТРИЧЕСКИЕ СОЕДИНЕНИЯ

N.B. Кабель питания $2 \times 1,5 \text{ мм}^2$ для соединения генератор-щит GQK и кабель $2 \times 1,5 \text{ мм}^2$ для соединения шаровой зонд-щит GQK должны быть обязательно экранированы, так как могут образовываться наведенные токи с последующей помехой в работе генератора.

3.2 СИСТЕМА ЦИФРОВОГО ТЕРМОРЕГУЛИРОВАНИЯ – COMPUTER COMFORT CONTROL SCP200 GEN

Главная система SCP200 GEN была создана фирмой Фраккаро для управления и контроля за работой до 60 генераторов VAPORAD. Данная технология позволяет значительно упростить монтаж электрической системы и осуществлять управление всей системой, поскольку позволяет управлять ею с помощью компьютера. Сеть, управляемая COMPUTER COMFORT CONTROL SCP200 GEN, имеет следующие функции:

- Получение данных с внутренних и наружных датчиков здания;
- Выход на реле управления;
- Регулирование температуры в помещении;
- Возможность программирования времени включения и выключения генераторов в зависимости от требований заказчика:
- Полный контроль в реальном времени состояния системы с возможностью изменения программирования в любой момент;
- Назначение пароля для входа в меню функций блока SCP200 GEN только для авторизованного персонала;
- Контроль состояния генераторов;
- Разделение системы на разные группы, позволяющее осуществлять контроль по зонам;
- 2 наружных датчика для оптимизации времени включения и выключения каждого отдельного генератора;
- Возможность контроля и управления с помощью персонального компьютера;
- Возможность прямого соединения с сетью Ethernet, предоставляющей доступ в систему со всех ПК сети с помощью Сервера Серийных Периферий Tibbo DS100.

Электрическое соединение с сетью SCP200 GEN

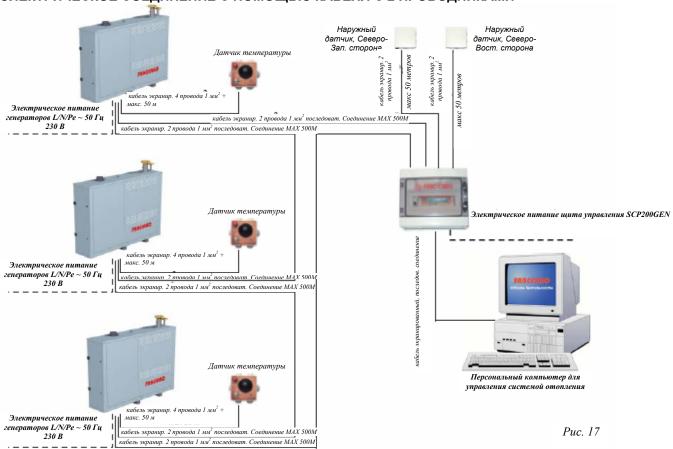
Сеть SCP200 GEN состоит из следующих блоков:

- 1) Логический блок цифрового управления SCP200 GEN с функцией контроля и управления данных, до 60 зон:
- 2) Блок передачи данных, соединенный с шаровым термостатом, с функцией получения и передачи данных на логический блок цифрового управления SCP200 GEN.

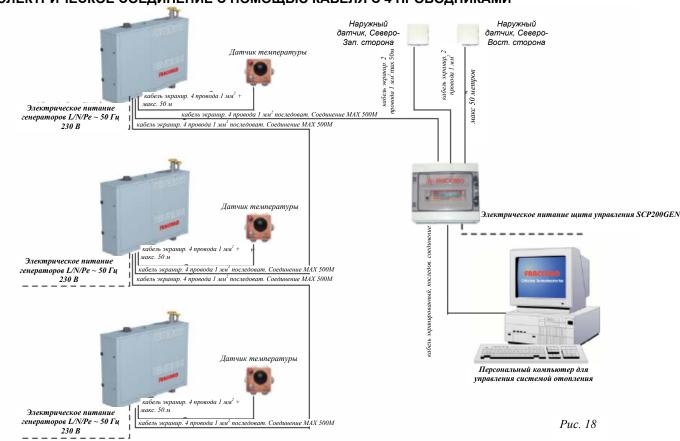
Кроме этого фирма Фраккаро разработала программное обеспечение управления данными FRACCARO-STAT, чтобы было проще осуществлять программирование времени работы за счет упрощения считывания состояния всей системы или отдельных зон, позволяя при этом осуществлять дистанционный контроль за работой и параметрами. Сеть SCP200 GEN — это лучшее, что можно найти в продаже для оптимизации тепловой мощности генераторов VAPORAD в зависимости от наружных и внутренних вариаций здания.

1. Логический Блок Цифрового Контроля SCP200 GEN с 2 датчиками снаружи здания

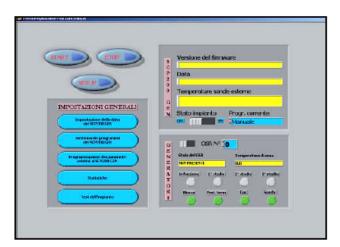
2. Блок передачи данных SCP200 PER



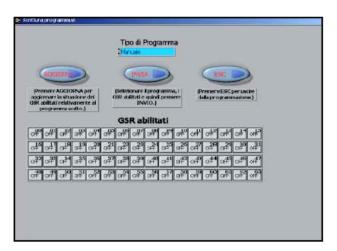
3. Шаровой термостат



4. Блок соединения с сетью LAN (Tibbo DS100)

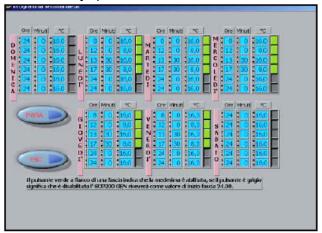

ЭЛЕКТРИЧЕСКОЕ СОЕДИНЕНИЕ С ПОМОЩЬЮ КАБЕЛЯ С 2 ПРОВОДНИКАМИ

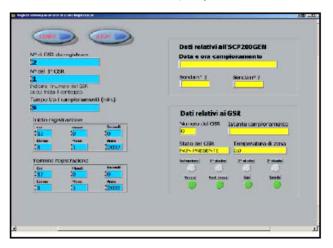
ЭЛЕКТРИЧЕСКОЕ СОЕДИНЕНИЕ С ПОМОЩЬЮ КАБЕЛЯ С 4 ПРОВОДНИКАМИ



ОПИСАНИЕ ПРОГРАММНОГО ОБЕСПЕЧЕНИЯ FRACCARO-STAT

Можно выбрать тип программы: ручной, еженедельный 1-2, персональный 1-2.


В еженедельной программе, окно 2, можно установить на период всей недели общую для всех горелок единую программу работы. В течение дня можно задать максимум 6 часовых режимов работы. Внутри клеток необходимо задать время, в часах и минутах, начала часового режима и требуемую внутреннюю температуру в помещении.


- Программирование параметров SCP-200GEN.
- Статистика: там, где приведены основные данные относительно рабочего состояния во времени системы отопления. По каждому генератору отображается общее время работы в часах и минутах, количество работы разблокировок, время максимальном и минимальном режимах (в Окно обновляется минутах). автоматически каждый час.
- Проверка системы (окно 4).

обеспечение Fraccaro-Stat Программное разработано фирмой Фраккаро для упрощения и ускорения написания программ SCP200GEN и одновременно упрощения считывания текущего состояния всей системы отопления и каждой отдельной при горелки, позволяя этом управлять дистанционно работой параметрами системы отопления.

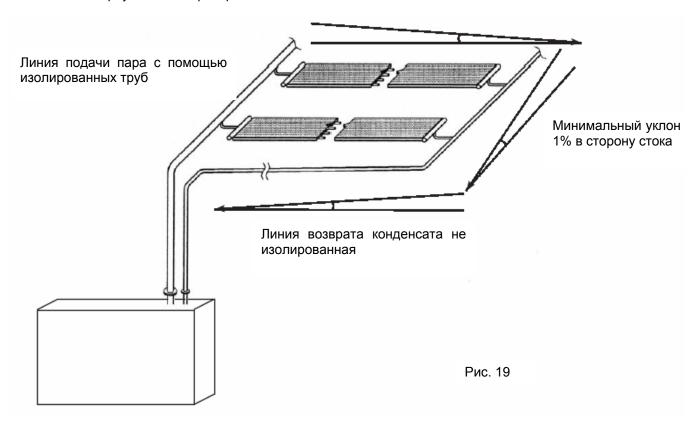
При запуске появляется окно I, в котором присутствуют основные инструменты для удаленного управления системой отопления.

- В разделе GENERATORI (ГЕНЕРАТОРЫ) можно выбрать генератор, информацию по которому необходимо вывести на экран. Далее там имеется раздел IMPOSTAZIONI GENERALI (ОБЩИЕ УСТАНОВОЧНЫЕ ПАРАМЕТРЫ), включающий:
- Написание программы для SCP200 GEN (окно 3): в нем команды для передачи заданных программ на цифровой щит; кроме этого можно подключить/отключить в отдельности горелки, сделав клик по пронумерованным маленьким кнопкам, показанным на рисунке.

4.0 ПРОЕКТИРОВАНИЕ СИСТЕМ VAPORAD

4.1 КОНФИГУРАЦИЯ СИСТЕМЫ

Расположение генератора


Генератор пара VAPORAD должен быть обязательно расположен ниже уровня теплоизлучающих панелей не менее, чем на 2,5 м – для использования принципа естественной циркуляции потока теплоносителя. Генератор VAPORAD может быть установлен как внутри, так и снаружи здания: его продолговатая форма специально разработана для того, чтобы минимально уменьшить размер по ширине. Для наружной установки не предусматривается никакого дополнительного элемента защиты, так как корпус выполнен из предварительно окрашенного алюминия, устойчивого к непогоде. Уменьшенные размеры генератора и простота его подсоединения к теплоизлучающим панелям позволяют устанавливать многочисленные генераторы на одном и том же промышленном или общественном здании для получения необходимой тепловой мощности.

Линии из теплоизлучающих панелей.

Максимальная длина одной теплоизлучающей линии — 24 метра, с учетом температуры пара 110°С и давления 0,5 относительных бар; при большей длине в конечной части линии циркулирует не пар, а конденсат, при этом резко снижается теплоотдача.

Линия пара и конденсата

Линии пара и конденсата должны быть установлены строго в соответствии с высотой, четко соблюдая основной принцип, согласно которому во время работы не должны образовываться «мешки» конденсата ни на подаче, ни на возврате. На вертикальном участке линии подачи не должно быть застоя конденсата; горизонтальный участок питания коллекторов должен иметь небольшой уклон или в сторону генератора, или в сторону коллекторов с тем, чтобы выводить возможный конденсат. Теплоизлучающие панели должны иметь уклон не более 1%, также как и труба возврата конденсата: здесь не должно быть ни сифонов, ни горизонтальных участков. В любом случае в любой точке системы жидкость должна иметь возможность вернуться в генератор исключительно за счет силы тяжести.

На нижеприведенном рисунке показана линия возврата конденсата: уклон труб составляет 1%.

Минимальный уклон 1% в сторону стока.

Рис. 20

Понятно, что правильный монтаж и тщательное соблюдение уклонов являются необходимыми предпосылками для обеспечения хорошей работы системы. Начальный диаметр линии подачи пара — 4" (DN100, т.е. 114,3 мм), и при условии работы в режиме скорость пара не более 14 м/сек (скорость, полученная с учетом максимальной тепловой нагрузки 200 кВт) обеспечивает отличную бесшумность работы системы. Диаметр линии конденсата — 1"1/4, конденсат поступает непосредственно в генератор.

Максимальная длина одной теплоизлучающей линии – 24 м для пара при 110°С и 0,5 относит. бар, при большей длине в конечной части линии циркулирует не пар, а конденсат, при этом резко снижается теплоотдача.

Линии распределения пара должны быть рассчитаны в зависимости от подачи пара, в кг/час, которая пропорциональная мощности, отдаваемой работающими теплоизлучающими панелями. При условии, что 1 кВт выделяется при подаче около 1,6 кг/час пара (панель на 110 °C и 0,5 относит. бар), для хорошей работы рекомендуется поддерживать скорость пара не более 10 м/сек (удельный объем пара при 110 °C и 0,5 относит. бар: 1,225 кг/мс).

При расчете диаметра придерживаться следующей таблицы:

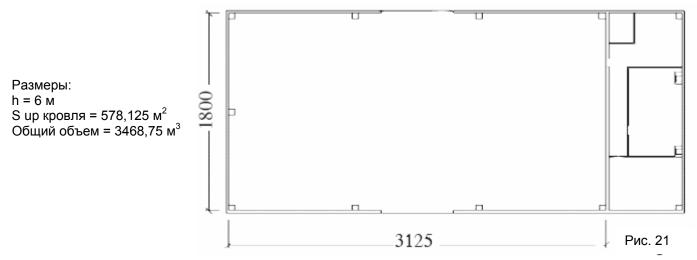
Номинальный	DN 32	DN 40	DN 50	DN 65	DN 80	DN 100	DN 125	DN 150	DN 200	DN 250
диаметр	1"1/4	1"1/2	2"	2"1/2	3"	4"	5"	6"	8"	10"
Минимум кВт		19	26	45	70	99	200	340	550	900
Максимум кВт	19	26	45	75	105	200	340	550	900	1400

Таб. <u>20</u>

В целях правильной работы для соединительных патрубков подачи пара в коллекторы использовать диаметры не более 2".

Для труб возврата конденсата расчет диаметра выполняется аналогично пару, с учетом значений в следующей таблице:

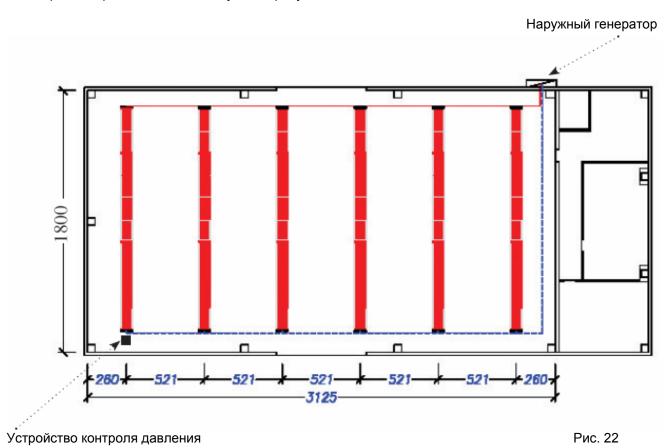
Цоминали	ый диаметр	Минимум	Максимум
ПОМИНальн	ый диаметр	кг/час	кВт
DN 20	3/4"	67,7	42
DN 25	1"	112,9	70
DN 32	1"1/4	322,5	200
DN 40	1"1/2	1112,7	690
DN 50	2"	2257,6	1400


Таб. 21

В целях правильной работы для соединительных патрубков подачи пара в коллекторы использовать диаметры не более 3/4".

При этом необходимо, чтобы все контуры воды и пара были смонтированы таким образом, чтобы была предусмотрена возможность теплового расширения труб и теплоизлучающих панелей.

Пример расчета


Предположим, необходимо рассчитать систему отопления с использованием теплоизлучающих панелей для кузовного цеха, план которого приведен на рисунке:

Общая покрытая площадь, которую необходимо отопить, - 578 м². Заказчик просит, чтобы температура воздуха в помещении была 15 °C.

Расчет теплопотерь (для простоты здесь не приводится) показывает, что устанавливаемая тепловая мощность должна составлять не менее 70 кВт. На этом основании решаем установить теплоизлучающие панели WP2-090: из таблицы общих тепловыделений получаем количество тепла, излучаемого панелями, а именно 738 Вт/м (данные с учетом Т в помещении = 15 °C и Т пара = 105 °C). Следует, что необходимо установить (70000 Вт)/(738 Вт/м) = 95 м теплоизлучающих панелей. После этого необходимо составить оптимальную конфигурацию, а для этого необходимо иметь в виду, что для наилучшего комфорта расстояние между двумя линиями теплоизлучающих панелей не должно быть больше высоты монтажа. Межосевое расстояние не должно быть более 6 метров. Используя межосевое расстояние 5,21 метра можно установить 6 линий длиной 16 метров каждая, общей длиной 96 метров.

Теплоотдача каждой линии составит: 0,738 кВт/м х 16 м = 11,808 кВт, к которым надо прибавить 0,560 кВт для пары коллекторов, получается 12,368 кВт на одну линию и 74,208 кВт на всю систему. Необходимым генератором для этих условий является VPR100, так как VPR070 не имеет достаточной мощности и имеется риск, что он не будет в состоянии поддерживать максимальную нагрузку. План проекта представлен на следующем рисунке:

ПОДБОР МАТЕРИАЛОВ

08140411145	16
ОПИСАНИЕ	Кол-во
ПАНЕЛИ VAPORAD	
Панель 6 труб межос.расст. 150 мм – участок 4 п.м.	6
Панель 6 труб межос.расст. 150 мм – участок 6 п.м.	12
Элемент соединения панелей WP2-090	18
Подвижной крепеж	96
Коллекторы подачи пара 6 труб межос.расст. 150 мм	6
Коллекторы возврата конденсата 6 труб	
межос.расст. 150 мм	6
ГЕНЕРАТОРЫ ПАРА И ТЕРМОРЕГУЛИРОВАНИЕ	
Генератор пара 100 кВт VPR100	1
Устройство контроля давления	1
Щит управления	1
Датчик в помещении	1

Таб. 22

МОНТАЖ ТЕПЛОИЗЛУЧАЮЩИХ ПАНЕЛЕЙ В БОЛЬШИХ ПОМЕЩЕНИЯХ

Один из наиболее интересных аспектов системы отопления с использованием панелей VAPORAD состоит в огромной гибкости ее монтажа благодаря модульности системы. т.е. возможности монтировать многочисленные модули, состоящие из нескольких панелей и нескольких генераторов.

Помещение делится на несколько зон, обслуживаемых соответственно одним модулем VAPORAD (теплоизлучающая лента + генератор). Различные модули при этом управляются централизованно с помощью общей программы управления SCP200GEN: таким образом, обеспечивается возможность разделения способов отопления каждой отдельной зоны.

Система отопления не подлежит получению разрешения противопожарной безопасности, если она состоит из нескольких наружных генераторов мощностью не более 100.000 ккал/час (это генераторы VPR070 и VPR100), а также **не подлежит проверкам со стороны S.P.I.S.A.L.** (и/или A.R.P.A.V.), так как рабочее давление ниже 0,5 относит. бар, а температура пара ниже 110 °C.

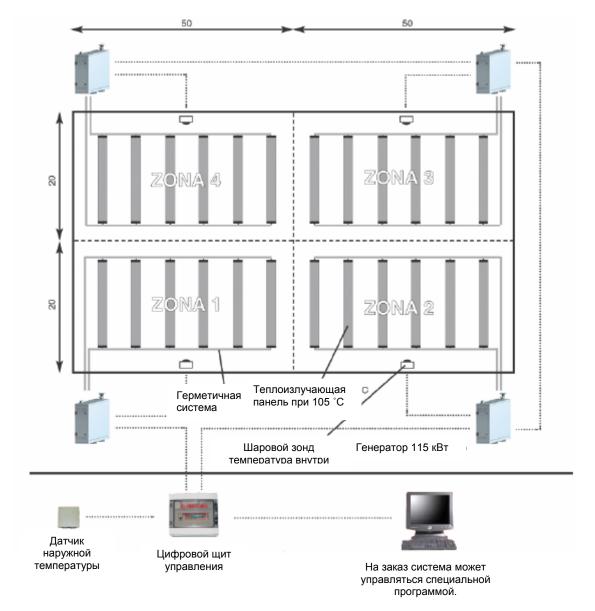
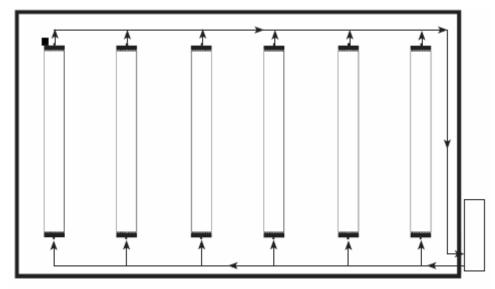



Рис. 23

4.2 ПРИМЕРЫ УСТАНОВКИ

Устройство контроля давления

Возврат конденсата

Подача пара Наружный генератор

Рис. 24

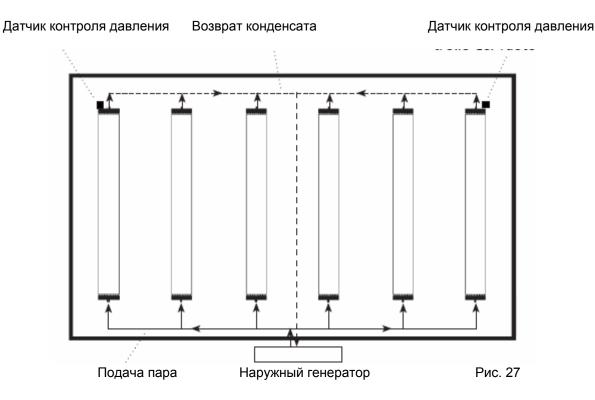


Рис. 25

Рис. 26

В особых случаях, при необходимости установить конденсатосборник в центре системы, необходимо установить два датчика контроля давления по краям системы, как это показано на рисунке. Вообще, в том случае, когда система состоит из нескольких контуров теплоносителя, датчики контроля давления необходимо устанавливать по одному на контур в местах, в которые пар поступает в последнюю очередь.

ПРИМЕЧАНИЯ

5.0 СЕРТИФИКАТ UNI ISO 9001:2000

Althin Jane 494 (Faser All-Vingent Institute Inglish Alt-California Collaboration Coll

																																										•					
		•	•	•	•	•	•	•	•				•			•	•	•	•	•	•	•	•	•	•		•	•			•	•	•	•			•		•	•	•	•	•	•		 	
		•	•	•	•	•		•	 •				•	•		•	•	•	•	•	•	•	•	•	•	•					•	•	•	•		•	•		•	•	•	•	•	•		 	
		•	•	•	•	•		•	 •					•		•	•	•	•	•	•	•	•	•	•	•	•		•		•	•	•	•		•	•	•	•	•	•	•		•		 	
		•	•	•	•	•		•	 •				•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•			•	•	•	•		•	•		•	•	•	•	•	•		 	
		•	•	•	•	•		•	 •				•	•		•	•	•	•	•	•	•	•	•	•	•	•		•		•	•	•	•		•	•		•	•	•	•	•	•		 	•
		•	•	•	•		•				 	•	•	•	•	•	•	•	•	•	•	•	•	•	•						•	•	•			•	•	•	•	•	•		•	•	 		,
		•			•						 	•			•		•	•	•	•			•		•						•	•	•						•	•				•	 		
			•	•	•							•			•			•	•	•		•	•	•	•							•	•				•	•	•	•			•	•	 		
		•	•		•						 				•	•		•	•	•			•		•							•						•	•	•				•	 		
		•		•	•						 				•	•	•	•		•			•		•								•					•	•				•	•	 		
			•		•	•						•			•		•	•	•	•		•	•		•							•						•	•	•	•		•	•	 		,

Иллюстрации и описания, представленные в данном руководстве, не несут обязательного характера. Фирма FRACCARO s.r.l. оставляет за собой право в любой момент вносить изменения, которые посчитает необходимыми по техническим, конструктивным или коммерческим причинам. Кроме этого, ввиду постоянной работы над совершенствованием качества своего оборудования, фирма FRACCARO s.r.l. оставляет за собой право без предварительного уведомления изменять данные, приведенные в таблицах.

FRACCARO S.r.l. Officine Termotecniche
Uff. e Stab.: Via Sile, 32 Z.I.
31033 Castelfranco Veneto (TV)
Tel +39 - 0423 721003
Fax +39 - 0423 493223
www.fraccaro.it
E mail: Technical@fraccaro.it

Настоящий документ является собственностью фирмы «Fraccaro Officine Termotecniche S.r.l.». Запрещается воспроизведение или передача электронным, механическим или другим способом какой-либо части данного документа без наличия на то письменного разрешения со стороны фирмы Fraccaro.

Содержание и технические данные в настоящем руководстве могут быть подвергнуты последующим изменениям. Фирма FRACCARO S.r.l. оставляет за собой право вносить такие изменения без предварительного уведомления в любое время в зависимости от усовершенствования соответствующих материалов и технологий.